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Sculpting the incoming wave in bimolecular scattering by varying its partial wave content is shown to provide
an effective means of controlling the cross sections for bimolecular collisions. ApplicationstoHrand

Ar + HD, treated as atorrigid rotor scattering, show enhancement factors of the outgoing flux for a selected
rotational transition of more than an order of magnitude.

1. Introduction vibrational quantum numberand rotational quantum number
4, and h22u is the A—BC relative kinetic energy. Similar
definitions hold for the primed symbols. Thus, if we attempt
bimolecular control by colliding an initial superposition state
® made up of, for example, two vitrotational states,

Considerable work, over the past three decades, has gone int
the study of atomrmolecule inelastic collisions, including the
development of extensive formalism and the calculation of cross
sections for rotational, vibrational, and electronic excitations.
All of these studies are designed to analyze the natural outcome ® = ¢, TH Cyl vy, )
of the inelastic scattering of atoms and molecules. By contrast,
current interest lies in the ability toontrol the outcome of
atomic and molecular processes. In particular, modern efforts
in coherent contréi 12 have aimed at using lasers to introduce
controllable quantum interference terms into the cross sections
of atomic and molecular processes. As a consequence, varying KAC J2u=E—e ,, ¥ J2u=E—e . 3)
specific laser parameters induce changes in these quantum vrly ! v2lz v2l2
interference terms which, in turn, significantly alter the natural
yields and cross sections. Both detalladd elementaAreviews
of this coherent control approach are available.

Examining the coherent-control literature shows that the vast
majority of controlled processes previously considered are
unimolecular in nature, e.g., the photodissociation or photoion-

ization of isolated molecules. Only recently have we shofn . : .
d suggested scenarié$.If, however, the internal states used in

that the essential principle of coherent control can be use he initial " h L
effectively to alter cross sections for scattering processes. Thatth€ initial superposition stat® are degenerate, the condition

is, we demonstrated that if one collides two molecules in a (eq 3) on the relative momenta can be achieved automatically

superposition oénergetically degeneratattering states, then  With @ single translational energy. o
the resultant scattering cross section contains controllable, " ref 4 we followed the latter approach by considering an
interference terms. initial superposition state comprised of degenemgtmagnetic

For a general bimolecular collision of the type sublevels. Th_e resul_tant scenario_, whil_e allowing control over
the angular differential cross section, did not allow for control

A + BC(v,j) — A’ + B'C(Vj") over 'tr_u_e integrgl cross section. In this paper, we explore the

possibility of using another combination of degenerate asymp-

wherev andj are vibrational and rotational quantum numbers, totic states, that is, different orbital angular momentum partial
the requirement that the total energy be the same means thatvavesl. In doing so, we deviate from the normal scattering
we must choose all the interfering paths contributing to the experiment in which two plane waves representing two molec-

then we must simultaneously correlate each component of the
superposition state with a translational wavefunction wHose
wave-vector satisfies eq 1, that is

That is, we must construct wavefunctions of the form

D = c,|vyj 0k, TH Cylun,j 0k, . O (4)

vply Vala

which satisfy eq 3. Whea,,j, # €,,j, this is not an easy task
to achieve experimentally, although we have provided some

process so that they are at energy ular beams are allowed to collide. Instead, by controllinglthe
components of the incoming wave, we createsaulpted
E=e¢,+ hACI2u = € t+ hk?2u Q) imploding wae and explore its effect on specific quantum
' transitions.

Here ¢,j denotes the internal state of the BC molecule with ~ Although this approach is applicable to any bimolecular
collision, we apply it here to rotational excitation (and de-
*To whom correspondence should be addressed. excitation), obtaining optimally constructed imploding waves.
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We show that sculpting the incoming wave can lead to a

Frishman et al.

The Schidinger equation can be sol&dby expanding

considerable enhancement of integral cross sections for SpECifiC‘PleM(R, 1) in bispherical harmonics:

transitions.

The structure of this paper is as follows. In section 2, we
summarize the usual theory of rotational excitation by collisions
using plane wave beams of structureless atoms and rigid
molecular rotors. In section 3, we develop the theory of
scattering, and in particular rotational excitation, for the collision
between two nonspherical imploding waves. In section 4, we
show how to maximize the scattered flux associated with a
specific transition by sculpting such nonspherical imploding
waves. Finally, in section 5 we demonstrate the utility of our
approach via two sample rotational excitation cases, the collision
of an Ar atom with H and with HD.

2. Rotational Inelastic Transitions with Incoming
Plane-Waves

Here, we summarize the theory of rotational transitions for
ordinary inelastic collisions, as formulated by Arthurs and
Dalgarno!®14Our purpose is not to repeat this well-know theory,
but rather to establish the notation used in this paper and to

1 2 A
¥R, T = Zﬁuﬁ.,ﬂ.m) Yir(R, ) (10)
wherey"(R, #), the bispherical harmonics, are defined as

PERD= TS s MY R

:—| m _J

m(® (1)

and are eigenfunctions df M, j, andl. Substituting eqgs 5, 6,
and 10 into eq 7 we obtain a set of coupled channel equations
for the radial expansion coeﬁicientl§|,_j|(R):

" d2+|'(|'+1) kf] (R +

2 R’ R R
2 2 ViR (R) =0 (12)
J

where

emphasize the differences between a process occurring with

ordinary plane-waves and with sculptured imploding waves.

Consider, then, an atomic projectile colliding with a rigid-
rotor target whose coordinates are specified by two angles,
and ¢, which comprise the unit vectot = (0, ¢). The
coordinates of the projectile relative to the rotor center of mass
are denoted R= (R, R), with R= (O, ®) being a unit direction-
vector. With the target Hamiltonian written as

hZ
Hrot ﬁJ(J + 1) (5)
wherel is the rotor's moment of inertia andis the rotor's
(internal) angular momentum operator, the total Hamiltonian
is given as

hz
2u
Here,u is the reduced mass of the atom-rotor system\{RR-

f) is the atom-rotor interaction potential. It is convenient to
introduce the functiond¥;"(R, %), which are the common
eigenfunctions oH; the total angular momentund; and its

projection on a space-fixedtaxis,M, having entrance-channel

internal and orbital angular momenta quantum numpensd
I, respectively. These functions satisfy the Sdimger equation:

H=H, —5V&+ V(R R (6)

HYMR, 1) = E¥MR, 7) 7

The total energyE, is comprised of translational and internal
rotational energies:

2
i + 256+ 1)

with k being the channel wavenumber, given by eq 8 as

K=

E= (8)

2ul e

2| ©)

(J+l)]

ViR = [ [Yir(RDOVR, Dyn'(R, ) dRd? (13)

Equations 12 are solved numerically, subject to the boundary
conditions,

Wy (0)=0

gﬂ;‘ouﬁl'ﬂ(R) ~
k,~ 12
(_ Tﬁrﬂ I(ij—lﬂ/Z)_a B, e 1(§R-172) _
kj,
kj 1/2 ' ,
(E) slvrejle—o—l(kj'R—l 1/2) (14)

whereqjI —j» an element of th& matrix, is given in terms of
T r—y of eq 14 as

e+

%J'l'*—n

The asymptotic behavior of the wavefunction can be written
as

801 — (15)

ll‘_J|

lim MR, 1) = PR, + PR, T) (16)
where the second term represents a scattered wave, and the first
term represents either a plane-wave (whose partial wave
components are given in the second line of eq 14) or an
imploding spherical wae (with partial wave components given
in the last time of eq 14).

Given the S matrix, the probability of observing a rotational
transition from statél to statej'l’ for fixed J is given as

= |Sl?

3. Scattering of Sculpted Imploding Waves

] I —jl (17)

We now generalize the treatment of section 2 to include a
collision with nonspherical imploding waves. Use of such
imploding waves offers a powerful method to control the
outcome of the collision and to alter the rotational transition
probabilities.
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Nonspherical imploding waves are formally obtained by a cross section as the ratio between the scattered flux and the

considering superposmons (W M(R, T) with arbitrary com- incoming flux per unit area. However, an arbitrary incoming
plex coeff|c|ents{ " wave has multidirectional and nonspherical incoming and
scattered fluxes. Hence the term “incoming flux per unit area”

I is meaningless, and a cross section cannot be defined. We

YR, 1) = ZOMZ Z " MR, D (18) therefore adopt the strategy of working separately with the
J 1= incoming (or imploding) and scattered fluxes and show below
(see section 4) how to choose tHej™} coefficients to
maximize the scattered flux into a given rotor stgte
The imploding part of the wavefunction in the— o limit:

However, since our interest is control via changesijand
m rather thand and M, it is more convenient to specify the
superposition state vian- and m-dependent coefficients,
denoted asi™™, which are related to the]" coefficients by a

unitary transformation of the form |mp(R r)~ ZZI rlnmylml(ﬁ)ijj(f) (26)
j [ kiR
JM :
c = Im.:m; IM) di™ 19
i n}Z—J’ mZ_,G im: IM) g (19) has an associated flux
Comparing egs 19 and 18 with eq 10, we see that foran _ |mp)< . mp(R )
incoming plane-wave,d(plang = i'vav2+10mndmo FHRT) = 2“ R, )—R
wheren? is the specmcatlon for the initigl projection. PR, 7)
By analogy to eq 16, we can break the asymptotic expansion Imp(R A)—] A (27)
of yj into incoming and scattered parts:
limy(R, 1) = w!”(R N+ (R, P (20) where is a radial unit vector. Using the fact that Bs— oo,
R—c ' ! J ! J ' imp, imp, imp,
dy; H(RNOR ~ —ikjy; (R, ), we integrateF; (R, T) over R
where (at radiusR) and over'rto obtain the total flux ofw"“"(R )

entering a sphere of radil&

¥R, r>—2; i (KR (R, D) (21) o
F™ = Im R [didRy™R,7 ‘)—( L

and

N e raratuymi = - 2 L

28
(22) ( )
We see that the imploding flux is proportional to the total
population of all{l, m, m}-states in the incoming wave. Any
unitary transformation on;'™ conserves this quantity.

For a plane-wavedm‘mﬂ(plane) = iVa2l + 210mdmo.
YR Y= 2Z > dMKR) Yin (R () (23) Therefore,
fmym

Substituting egs 11 and 19 in eq 21 and using the orthogonal-
ity property of the Clebsch-Gordan coefficielttallows us to
express the incoming wavefunction in terms{dﬁ’m} as

d ™M™ (plang|?® = 20+ 1 29
Zmzml i’ (plang)] HZ( ) (29)

For cylindrically symmetric potentials, the kector can be
chosen in the direction, and the summation ovey reduces
to the single terrm = 0. As a resulty(R, T) depends onthe  This sum, and hencE™ for the plane-wave, are infinite. In

angle between kand R but is independent of the azimuthal order to be able to compare the effectiveness of rotational

angleg. transitions using a general imploding wave to that of a plane-
Defining ageneralizedscattering amplitude as wave, we consider only a finite portion of both waves by
. Ly R ) introducing a cutoff angular momentulm chosen to be the
fj'nrjmj(R) = deijZI Wm,(R);(ﬂmjm; JIM) x highest angular momentum which contributes effectively to the
m m scattering process. .
g mm; D IMTY g (24) Using a similar calculation as fop,™R, ), the scattered

flux of ¥*(R, T) into j', n{ is given by
we can writey’(R, T) as
t
1 Fimein = e T ray, myim (R (30)

i L
PRN=—Y S fimim®|=| €™, () (25
’ m%%‘"‘ " (h) o

We now proceed to derive expressions for the incoming and scat scat scat scat
— F —im F i
scattered fluxes associated with a general incoming wave. weF me — i'mp—im jm = J'me—jm
concentrate on fluxes, rather than cross sections, for the
following reason. Plane-waves have a uniform incoming flux Fjsf_cfjt= Z Fff,’?il m (31)
coming froma singledirection and allow for the definition of My

Related,m- and/ormy-summed fluxes are given as
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After some algebra, it is possible to show that favorable values dfandm, for which theBi'™ matrix elements
are largest. The other is quantum mechanical: we allow
scat _ interference between all the amplitudes comprising the incoming
Fy me Z %I (J : MM IMT, '“J'| (32) wave. The latter is more general and is utilized here.

Within the framework of the quantum strategies, it is possible
if j =j’, m = my, an additional (infinite) scattered flux exists 1O optimize thedjﬂ“m coefficients, subject to the constraint that
from theincomingwavefunctiony"(R, )] and that either the total incoming flux is the same as that of a plane

! wave or that the normalization of the incoming wavefunction

scat ] PR is the same as that of a plane wave:
Fo m= _J%| djrpm(Jlmjml; IM) Tyl (33)
gm [ RN ORDPIART = 04,00 — K2) (39)

Both constraints are considered below. In particular, details
A of the constraints are discussed in section 4.1 and 4.2, and results
o= — % M M Ty Thy 0G0 = are presented in section 5.
/Akp " 4.1. Optimization Subject to Incoming Flux Constraint.
In order to equate the incoming flux, given in eq 28 with its
—% Z Tyl? (34) plane-wave value, we introduce a Lagrange multiplier

In a similar fashion we can show that

F/I

-~ [ Z dP™ ™ B L — A
4. Maximization of the Scattered Flux im uk 5 A !

1"Im"'my
m

(IdP™ — [P (plang)?)] (40)

%lfferentlatmg with respect tal' ;™™ to obtain the extremum

Consider now maximizing the scattered flux into a giyen
state, subject to various constraints. The control parameters ar
mm - . . .

this d],A coefficients, YVhICh shape the input Wavefungtlon points ofFl_ " we obtain the condmon
Y; (R, 7). Our strategy is to formulate the problem as a linear 1.
optimization problem in these coefficients. mm im 5 qmm’ "
Note first that if we average om, then control is possible Zd Bimm = 4Gy "=0.1,... (41)
only if the d™ coefficients depend upom. That is, if d'™
are independent oy, that is, if ™ = dj', then no phase  Defining a g = {d]'™} eigenvector, whose dimension is the

control over the rotational transmons is pOSSIb|e In order to number of possmle initidkstates, we can write eq 41 in matrix
see this, consider the nonpolarized flux, given (in the absenceform as

of my dependence), by

ji'm, — '
h 1 ) B'™ d]-y =dm (42)
Fo= Z > dr d;‘;f,“' (jimm; IM) x
/Ak,» 2 +1) f/ & mil where/; is a diagonal matrix of eigenvalues.
" The flux associated with each eigenvector is proportional to
Q" mym.; IMT; e Ty “J' (35) the value of the corresponding eigenvaiye since by eqs 40
Using the orthogonality of the Clebsch-Gordan coefficiéhts, and 42
we obtain . fiam R ‘
5 L 014 1 Fi, m= k] [d ‘B -djm — A (dm-djm — d'(plang-
Fioal= — — Z Z( )|d;.“|2|T%H.|2 (36) d(plang)]
uk (2 +1) 4 f\2 + 1 |
h f
That is, the flux no longer depends upon the phase oﬂj‘fﬁ’é =— [l d'(plane-d(pland] = —ﬂi Z) @-+1n=
coefficients. This loss of control by incoherent averaging over “kn

m is reminiscent of similar results obtained foy control over h 5

collision processes. —A(ls+ 1) (43)
Consider next maximizing the scattered flux to a giyen ﬂki

manifold for an incoming wave comprised of only omestate.

For this case we have, using eq 33, Thus, the scattered flux associated withjthe j, my transition

is Ay times thel-truncated sum of the partial-waves weights
associated with an incoming plane-wave. In particular, the
Fsc_ajtm =— Z z dp™d *mm BIm, - (37) maximal eigenvalue yields the maximal flux. Since the optimal
j T mm ' Ay for onej' — j transition will not necessarily enhance the
flux associated with any other transition, this control scenario

where provides a great degree of selectivity of one rotational transition
ji'm y over another.
Bl Imm = %(Jlm m; IM)(I"mm.; IMT il ~,| (38) 4.1.1. The Cutoff Angular Momentum For a plane Wave,
FS‘E‘J‘,W (R/uk;)d'(plang-B-d(plang). For high''s, B} m'
It is easy to show that thBi'™ matrices are Hermitian. — 0 faster than 147" d";™™), and therefore=>='is finite,

Two strategies for control ovefsca are in principle pos- even if dd is |nf|n|te By contrast, accordlng to eq 43, the

sible: the first is “classical”, in which we essentially choose optimal solution does not contalB{J ,'Pn‘ [, andFJ —im is only
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limited by the choice of;. As we increasé in the construction 200
of the optimal imploding wave we can achieve larger and larger
scattered flux into the targgtmanifold. Nonetheless, choosing

I; arbitrarily large may not be the best practical approach to
increasing the cross section, since the difficulty of preparing
the imploding wave in the laboratory is expected to increase
with increasings.

In order to decide what type of optimization problem we want
to solve, we choose the cutoff parameteaccording to the
following procedure: we calculate the diagonal contributih (
uk)m(2l + 1)BlY, of thel-components of a plane-wave (foy 01
= 0) to the scattered flux (see eq 37) and truncate the sum when
this value dips below a preset fraction (1%) of its maximal value.

We emphasize again that for a nonuniform imploding wave, —60"—— ; ‘ ;

: X 2 3 4 5
each choice of; corresponds to a different scattered flux and 1 (A)
hence to a different optlr.nllzatlon PrOb'er,n- The above Ch?'ce Figure 1. Isotropic potentiaMg(R) and leading anisotropic potentials
of I corresponds to optimizing the imploding wave for the first  tor the Ar—HD and Ar—H, systems.
I; partial wave and setting the weights of the remairlirgg I
partial waves to the values for a plane-wave. These partial wavesThe termsVo(R) andV»(R) are parametrized by Lennard-Jones

Potential (cm_l)

no longer contribute to the inelastic process of interest. potentialst920.22
4.2. Optimization Subject to Incoming Wavefunction 1
Normalization Constraint. If we require the incoming wave- Vo(R) = & [(R/R)? — 2(RYR) (48)

function y'(R, ) to satisfy ad;;,0(k — k) normalization b
condition (eq 39), the coefficients which make up the imploding Va(R) = €,[(R/R)** — 2(RY/R)°] =

wave must satisfy (see Appendix) the constraint azeo[q(RglR)lz _ 2(R§/R)6] (49)

z dP™ di™ = 2(2 + 1)0 Om.0 (44) where

m

q=(R/R)° and a,= (efe))q
for everyl, m,, andm,. . _
In the cylindrically symmetric cas® = 0, and if we consider For a heteronuclear diatom composed of two isotopes (such
onem value, then as HD), we can computé;(R) as®
0 . iom° dVO(R) dVZ(R) 1.
di°=i'Vaval + 1% (45) ViR = —0|—r~ T 04—+ R V(R

That is, the magnitude for ea¢ctcomponent is the same as in  whered is the displacement of the center of mass of the diatom

the plane-wave, and the only free parameters that can befrom the center of force. The potentialg(R), Vi(R) (for Ar—

optimized are the phas¢[’’}. The scattered flux ofy?(R, T) HD), andV(R) are shown in Figure 1.

is now given by By defining a dimensionless variable = R/R, and a
dimensionless potentiaf* = V/e, whereRy = RS ande = «o,

h the Coupled Channels equations (eq 12) assume the form
scat 1/2
Fom =" ZH(ZI +1)

wk; @ I'Q+1)

" -1 j(oM0— gy i’ __+ —KZ,
(2| + 1)1/2|| ik e'(ﬁjl 9|I0) B{J,,mql,,m (46) I dX2 X2 ]

U (9 +

BZ Zvﬁl’,j”l”(x)uf”l”kjl(X) =0 (50)
The optimization is performed by a nonlinear search routine ]
in the{Gj',n space of phases.

where
5. Computational Results B— 2”62'_‘)1271 and K2= IR =
h
5.1. The Model.To demonstrate the possible control afforded 2,uan h2. .
by sculpting the imploding wave, we consider a rotational 7 E-5ii+1)] (1)

excitation problem, studied in refs 16 and 17, and compare the

imploding wave results to those obtained with plane waves. The dynamics is seen to be determined by three dimensionless

Following refs 16 and 17, we expaMfR, R-), the projectile- parameters:B, BE/e, uRZ/l, and by the form of the potential

rotor interaction potential, in a series of Legendre polynorfials chosen.

anq truncate the expansion,. as appropriate for a weakly \ya consider the ArH, system as an example of a homo-

anisotropic system, after the first three terms: nuclear molecule and the AHD systems as an example of a
. . A heteronuclear molecule. The effect®bn Vo and onV, is of

V(R, Rf) = Vy(R) + V(RIPy(RT) + V,(R)P,(R*F) (47) the order ofd? and is therefore ignored, and we takgandV,
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TABLE 1: Scattered Flux Associated with All the j' <— j =
2, mj = 0 Transitions when thej’ = 4 State Is Optimized

(a) Ar—HD System

Frishman et al.

TABLE 2: Scattered Flux Associated with All the j’ — j =
2, m; = 0 Transitions when thej’ = 0 State Is Optimized

(a) Ar—HD System

maximum maximum  minimum maximum maximum  minimum
j" plane-wave (flux norm) x10%x(lf+ 12 (wfnnorm) (wfn norm) i’ plane-wave (flux norm) x10%x(li+ 1)2 (wfnnorm) (wfn norm)
4 16.3 55.5 7.4 22.0 13.9 0 6.2 66.3 6.7 37.7 0.9
Other Transitions Other Transitions
0 6.2 0.6 0.1 5.8 15.0 1 37.9 38.4 3.9 33.2 47.3
1 37.9 19.8 2.6 49.8 18.0 2 137.2 34.4 35 117.4 124.2
2 1372 43.9 5.8 112.9 148.5 3 38.2 54.7 5.5 32.0 445
3 38.2 314 4.2 45.0 40.4 4 16.3 20.2 2.1 15.0 18.9
5 2.0 12.8 1.7 2.3 2.0 5 2.0 0.4 0.0 2.1 2.0
6 0.1 0.1 0.0 0.1 0.1 6 0.1 0.0 0.0 0.5 0.1
(b) Ar—H, System (b) Ar—H, System
maximum aximum minimum maximum maximum minimum
j' plane-wave (flux norm) x10%m(lf+ 1)? (an norm) (wfn norm) i’ plane-wave (flux norm) x10%x(ls+ 1) (wfnnorm) (wfn norm)
4 1.6 7.4 1.7 2.0 1.0 0 10.5 92.4 13.3 34.8 0.6
Other Transitions Other Transitions
0 10.5 50.8 11.8 24.4 7.7 2 4209 171.5 24.7 396.3 431.3
2 4209 112.2 26.1 406.7 424.4 4 1.6 11.0 1.6 2.0 1.3
a All values have been multiplied by a factor of 1000. a All values have been multiplied by a factor of 1000.
to be the same for both A, and Ar—HD. ForV;, the leading Ar-HD Ar-H, (a)
term is proportional t@, and the next term, neglected here, is 2000 2
proportional todS. 4000 5" R 3
g = E
The potential parameters chosen to model these systems are E = = A \
€0 =52.21 cnt, RE = 3.5573 A,¢;, = 6.78 cn1?, RE = 3.814 0 *12 5008 '28
A, 6(Ar—HD) = 0.1276 A2122 Therefore,a; = 0.0359,a, = 4000
0.198, andy = 1.52. uar—n, = 1.9188 amuyar—np = 2.8099 M
amu. The H and HD rotational constants aB: = 60.80 and 0 -5 0 -40
45.655 cnl, respectively 4000 20 4000 20
We obtain theﬁl,,.ﬂ-I matrix elements by propagating the j\M S~
Coupled Channels equations [eq 50] using Gordon’s méthod o, 62% 20 % 20 % 20
until we reach the asymptotic region, where the appropriate 1 1 1
boundary conditions [eq 14] are imposed. In this case, there
are seven open channejs=t 0, ..., 6) for A—HD at Ey; = Ar-HD ArH, (b)
2000 cnt?! and three open channefs= 0, 2, 4) for Ar—H; at
the same energy. Fixinghax the maximaj quantum number, 000 5" 000 -~
to 6, results in (at most) 16 channels for edcfihe calculation = J\ 2 \ = 2
was repeated for eachvalue, whose maximal value is given 0 20 0 -40
asJmax = jmax T Ir. 4000 5 4000 10
The properties of the'/y(R, B)* Pi(R+) yl'(R) dR df WW M IS
matrix element®¥ ensure that th&/s(R)Po(RF) term can only 0 -5 0 -10
couplej quantum number values of the same parity. The same 2000 50 2000 10_/
holds for thel quantum numbers. Thereforj} ' vanishes e
0 _10

if either ofj — j" orl” — I are odd. This is also the case if there
is aVi(R) potential, butmy = O (due to the fact that one of the
Clebsch-Gordon coefficients in eq 38 is zero). Hence B 'fs
matrix factors into an odd-block and an eveh-block, which

are diagonalized separately. The overall maximal eigenvalue,
therefore, corresponds to a.fvector with only odd or only
even components. The optimized wavefunction is therefore
parity-adaptedy;(R, T) = (—1)Pyj(—R, T), wherep is the parity

of thel states in the expansion.

Below, we discuss the optimization results for four cases:
thej’ =4 —j =2 and thg' = 0 — j = 2 transitions for Ar
colliding with HD and for Ar colliding with H, at a collision
energy ofE = 2000 cm!. We focus on the case of initial =
0.

5.2. Optimization Constrained by the Incoming Flux.
Tables 1 and 2 show, in column 3, the flux into all fifgl
having optimized the results fgr=4—j=2,m=0orj =
0-—j =2, m = 0 for both Ar+ H, and Ar+ HD.

—50
45520 20 0 20

1 1 1 1
Figure 2. 1-Components of the;g eigenvector (left, absolute square;
right, phase) leading to a maximal flux for the AHD and Ar—H,
systems: (a) =4—j=2,m=0,1,2,b)j=0—j=2,m=
0, 1, 2; using the flux-normalization condltlon For = 0, only even

0
20

or only oddl-values have nonzerd components; hence, only those

are shown.

For example, the maximum flux for rotational excitation into
j' = 4 for Ar + HD is 0.055, as compared to the partial wave
result (column 2) of 0.016. Note also that the optimization into
j' = 4, for example, does not necessarily decrease (or increase)
the flux intoj" = 4. That is, each optimization is selective to

the particular product channel optimized.
Thel-components of the eigenvectgrdeading to a maximal
flux for thej' = 4 —j =2 and thg' = 0 — j = 2 transitions

are shown in Figure 2. Clearly, as can be seen, lower angular

momenta contribute to the AiH, scattering than to ArHD.
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(a)

Ar-HD " 1*

in 2
Ar-H " |
04

-0.4
-0.2

Figure 3. Square of the absolute value of the incoming wavefunction
leading to maximum outgoing flux for the AHD and Ar—H, systems
using flux-normalization condition. The circle depicts the size of the
diatomic: (a)j’ = 4 —j = 2, m = 0 optimization, maximum values
of |§mal? are 520 for A-HD and 163 for Ar-Hy; (b)j' =0—j =

2, m = 0 optimization, maximum values cpfp',’r‘]asz are 235 for A

HD and 125 for ArH,. Solid line contours correspond to 0.5, 0.1,
and 0.01 of the maximum value; dashed contours are fof, M,
and 10° of the maximum.

Similarly, lower angular momenta contribute more to the
optimized excitation proces§’ (= 4 — j = 2) than to the
optimized de-excitationj'(= 0 — j = 2) process.

The cutoff values for the angular momentum kre 48 and
36 for Ar—HD and Ar—Hy, respectively, for thg' =4 —j =
2, my = 0 case (Table 1) and 55 and 46 for fhe= 0 —j = 2,
my = 0 case (Table 2). In order to be able to compare those
results, we also give the maximal flux divided by the normaliza-
tion factor ofz(lf + 1)

The absolute square value of the incoming wavefunction

corresponding to the maximal flux are shown in Figure 3. Theseedednpi“’(l)*(R, ‘r)z/)}:‘(z)(R, Y= 511125(‘3-(11) _ ki(f))

should be compared to an incoming plane-wave, whose absolut
value is unity. Values for the maximal flux for these cases are
provided in the figure captions, from which it is clear that the
Ar + HD wavefunctions are less dispersed than those fot-Ar
H,. Note that the incoming wavefunctions for the four cases
shown in Figure 3 are remarkably different from one another
in topology. For examplegm,J?for Ar + HDj’=0—j =2
de-excitation is dominant at large valueszpfvhereas the Ar
+ HD |yma)? for excitationj = 4 — j’ = 2 is heavily
concentrated at smatl A similar difference is not seen for the
Ar + H, case.

The differential cross section is shown, for initiad = O
values (summed over all finay values), in Figure 4. Interest-
ingly, the optimized cross sections are symmetric alfbet

J. Phys. Chem. A, Vol. 103, No. 49, 19980339

Ar—HD : max. Ar—HD : plane wave (a)
0.015
0.0025
2
=
=
0 0
0 T2 n 0 2 T
0 (rad.) 0 (rad.)
Ar—H2 : max. Ar—H2 : plane wave
0.015 0.0004
=)
5
0 0
0 /2 Tt 0 /2 n
0 (rad.) 0 (rad.)
Ar—HD : max. Ar-HD : plane wave (b)
0.02
~ A /\ 0.008
2
=
s M/\/‘J
=)
0 . 0
0 /2 n 0 w2 T
0 (rad.) 6 (rad.)
Ar—H2 ! max. Ar—H2 : plane wave
0.4 0.006
2
o
5
0 q 0
0 /2 n 0 /2 b
0 (rad.) 0 (rad.)

Figure 4. Differential outgoing flux for the case of maximal flux (left)
and for a plane-wave (right), for the AHD system (top) and the Ar

H, system (bottom). Results are for optimization using the flux-
normalization condition: (a)) = 4 < j = 2, my = 0 optimization; (b)
j'=0<j =2, m = 0 optimization. The plotted flux is a sum over all
final my values.

90°, whereas the plane-wave result tends to peak fieafl.80°.
This is because (fom = 0) only | values of the same parity
contribute to the final result, a consequence of the fact that the
B matrix does not couplévalues of different parity.

5.3. Optimization Constrained by the Normalization of
the Incoming Wave. In the second approach, we require that
the incoming wavefunction be normalized as
(52)

I
As in eq 45, the coefficientd’™ are given by

P =iV VA + 167 5, omy (53)

The extrema are obtained@talues which satisfy the condition

ancatejrgO, en]o

i1
aepO

._,oﬁﬁ.")zzo

1=0,1,2,.. (54)

Equation 54 leads to a system of nonlinear equations, which
may have many solutions, corresponding to local minima/
maxima. To find the absolute minimum/maximum with high
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Ar-HD Ar-H,

(a)

min. max.

i

cos 0

50 0 50

il

Ar—H2

(®)

min.

g
&

1 (m.=0)

cos 6

—

;(mjzl),a
% =
B

| (m.=2)

Figure 5. I-components of the;d eigenvector leading to a minimal
(left) and a maximal (right) flux for ArHD and Ar—H,: (a)j' =4 —
j=2,m=0,1, 2 optimizations; (b)) =4—j=2,m=0,1, 2
optimizations. Wavefunction-normalization conditions were used.

probability, we use a simulated annealing algorihrwith
variables@jr,“0 for | = 0 to ly, wherel; is estimated in section
4.1.

The maximal and minimal fluxes for the= 4 —j = 2, m
= 0 transition are shown in Tables 1 and 2 (columns 4 and 5),
along with the fluxes into other final channels. For the case of
Ar + HD, for example, the range of results ifte= 4 obtained
with incoming plane-wave normalization is 0.0139 to 0.0220,
compared to the flux associated with an incoming plane-wave
of 0.0163. The less-constrained maximization associated with
the flux norm yielded the considerably larger value of 0.0553.
Note, however, that even though tive 4 —j = 2, my = 0O flux
has been maximized, it often still remains small compared to
the elastic scattering & j' = 2).

The phase?j’PO leading to a minimal and to a maximal flux
forthej) =4—j=2,m=0,1,2andforthg' =0—j =
2, m =0, 1, 2 transitions are shown in Figure 5. They show
remarkably little uniformity, reflecting the individuality of each
optimization. This case-dependence is also evident in the
absolute squares of the incoming eigenfunctions leading to
maximum and to minimum scattered fluxes, shown, for4Ar
HD, in Figure 6. The corresponding differential fluxes for
= 0 (summed over all possibte’) are shown in Figure 7. Note
the significantly different angular distributions associated with
the optimized vs plane-wave results (Figure 4). Analogous
results were obtained for Ar Hy, but space limitations prevent
their consideration her&.

Additional studies were carried out to assess the stability of
the extrema. For example, the phase of e@dontributing to

Frishman et al.

(a)

min

Ar-HD g 12

0.6

-0.6
-0.3
x/R

Figure 6. Square of the absolute value of the incoming wavefunctions
leading to maximum and minimum outgoing flux for the -AdD
system using the wavefunction-normalization condition j(a 4 <

j = 2, m = 0 optimization, maximum values are 169 far,,)? and

138 for |ym % (b) j' = 0 —j = 2, my = 0 optimization, maximum
values are 193 fopy™ |2 and 30 for|y/n. |2. Contour values are as in
Figure 3.

Ar—HD : min. Ar—HD : max. (a)
0.2
.0.008
2
st
=
0 0
0 /2 n 0 /2 n
6 (rad.) 0 (rad.)
, (b)
Ar-HD : min. Ar-HD : max.
0.003 10.015
)
e
=
=3
0 Hsoonche, 0
0 2 /2 n
0 (rad.) 0 (rad.)

Figure 7. Differential outgoing flux for wavefunctions leading to a
minimal flux (left) and a maximal flux (right) for ArHD using the
wavefunction-normalization condition: (=4 —j=2,m =20
optimization; (b)j" = 0 —j = 2, my = 0 optimization.

djrﬁ”‘ was vaired byr to determine the effect of such changes values of the phases from their values at the extremum, over a
on the yield. Results showed that the yield was strongly affected range of—0.3 to 0.3 radians. The flux was found to be sensitive
by variations in some angles and totally insensitive to changesto some of these variations, but a wide variety of phases in this
in others. An alternate study involved random changes in the range produced similar flux values.



Imploding Waves in Biomolecular Processes J. Phys. Chem. A, Vol. 103, No. 49, 19980341

6. Summary SRy IR, DY PR D) =
We have shown that it is possible to significantly alter the «miml m2m2 Moy 12)
nature of the incoming scattering wave in a bimolecular process 42 Z Z dhh djzlz fdeRJh(kil R)le(ki(z R) x
so as to optimize the scattering into a given product channel. 12M MMM,
. . F A . | R
From the viewpoint of coherent c_ontrol, thl_s is yet anqther de Yfzml(R); Dﬁnzl)zm,lz(m B, 7/)lem'|z(R) %
example of how one can superimpose eigenstates in the o

continuum to produce controllable quantum interferences that o R R R
affectg the flux into particular channels. (17" mzfdrY}“ml(r)sz(r) (A.3)
It remains a challenge to produce these modified incoming
waves in the laboratory. One possible approach would be to Using orthonormality relations of the spherical harmonic
focus the projectile beam or the target beam (or both) with an functions, we obtain

optical standing wave specifically designed for the purpose.
D) D@ = MMy gmm;
Acknowledgment. M.S. and P.B. have been greatly influ- deldrw'l (R Dyj; (Rar D 4Zmzm %d“' de
enced through many encounters over the years by the generous | n
spirit of Professor Kent Wilson, a true pioneer in the field of fdeR j|(|<,-(ll)R) j|(kj£2)R) X Dfn) m (o, B, y)(_l)mrmzéjljz
laser chemistry. Support for this research was provided by the ne
U.S. Office of Naval Research, by Photonics Research Ontario

i ] ' After imposing the Bessel functions orthonormality conditions,
and by the Israel Science Foundation.

we obtain

Appendix: Orthonormality of General Incoming Waves delde*l(l)(Rl, ?)wj(f)(RZ P = 4Z z zdﬁqml djr?lmz %
In this appendix, we prove the orthogonality properties of myMy My

(cylindrically asymmetric) incoming waves with arbitrary LDy i 1) 0) Y mM,s

d’™. We also derive the conditions satisfied d§™ when a fdeR J'(K(l R) i, R) Dy (0, 7)(—1) O,

general incoming wave is constrained to have the normalization o ] )

of a reference plane-wave. Therefore, the angular normalization requirement is
Orthogonality between plane-waves implies, amongst other Y

things, that two waves propagating along different directions, 6(kj(1 - k,-z )=

kD andk®), are orthogonal to one another. If we insist that the 1

sculpted incoming wavefunctions have this orthogonality prop- — z szTml dj"l]”‘2 DET'])I m (o B, p)(—1)" ™

erty, we must characterize each incoming wavefunction with a A7 T rim, T 2

k vector. However, in contrast to plane-waveg\actor cannot

signify the propagation direction of the wavefunction, since a Using the identities

general incoming wavefunctiuon does not have a well-defined

propagation direction. Thevector should therefore be thought 5(&‘_(1) - f<‘_(2)) = ZZY'*m (K-(l))\ﬁm (R‘_(Z)) (A.4)

of as a quantum number which helps differentiate one general ! 2 & - 22

incoming function from another.
We begin by writing a partial wave expansion, valid over Ylm(k‘f)) = rrZ'Dg]) (o, B, y)\(lm,,(kj(ll))(—1)m ™ (A.5)

the whole space (and not just in the asymptotic region, as in eq

23), for two incoming wavefunctions, as

we obtain
VRN =23 5 IR inR)Yim®  (AD) 0
iy ok — kK?) =
. @) 0} @Oy —1)M—m2
VRN =23 5 dMiKIRNin(RVin®  (A2) 2 2. Yin 632 Pinn (@ £ )i, (6,3(2)
”im 2 1
« A 1 N N
Since in the above expansion; R (61, ¢1) and R = (02, ¢2) 0= Z —dNmdnme -y, (kj(l))YI (kj(z)) x
are expressed relative to the direction§<§ff andk®, respec- mzlmz2 %4# S Mt e
tively, we first need to express both wavefunctions with respect 10) _\mi—m
DY .. (o B, )(—1)™ ™ (A.6)

to the same axis, which can be chosen as the directiorkj(gff
Rotating thekj(zz) vector to coincide with the axis via three
Euler anglesd 3, y), we can Wl’itel/)j(z)(Rg, f) in the common
coordinate system as

Using the orthogonality and normalization of the rotation
matrices (see ref 15, eq 4.6.1)

1 p2n pr p2n (1) (1) . _

HOR, D~ o O . DR .y sty =
2 dPj,(kR)'S DY (o, B, )Y, (RY(—1)™ ™Y, (P 1

Z% (K )HZT mur (@ By V)Y (R)(=1) im (F) 6m1mlémzmgalllzm (A7)

whereD{2,..(a, 8, y) are Wigner rotation matricé§.Integra-  we obtain, my multiplying eq A.6 b{) , (a, 8, y) and
tion yields integrating,
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1
— N MMy 2 (1) i(2)
0= %Mzdjl’,“"‘ d1™ = Yim (k) Yim (K7 (A.8)

Finally, choosingk™ = (0, 0), we obtain the normalization
condition on thedj'P'J" coefficients as

(A.9)

I

S AP d™ = 2(2 + 1) Omo
m

for everyl, m,, andm,.
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