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Sculpting the incoming wave in bimolecular scattering by varying its partial wave content is shown to provide
an effective means of controlling the cross sections for bimolecular collisions. Applications to Ar+ H2 and
Ar + HD, treated as atom-rigid rotor scattering, show enhancement factors of the outgoing flux for a selected
rotational transition of more than an order of magnitude.

1. Introduction

Considerable work, over the past three decades, has gone into
the study of atom-molecule inelastic collisions, including the
development of extensive formalism and the calculation of cross
sections for rotational, vibrational, and electronic excitations.
All of these studies are designed to analyze the natural outcome
of the inelastic scattering of atoms and molecules. By contrast,
current interest lies in the ability tocontrol the outcome of
atomic and molecular processes. In particular, modern efforts
in coherent control1-12 have aimed at using lasers to introduce
controllable quantum interference terms into the cross sections
of atomic and molecular processes. As a consequence, varying
specific laser parameters induce changes in these quantum
interference terms which, in turn, significantly alter the natural
yields and cross sections. Both detailed1 and elementary2 reviews
of this coherent control approach are available.

Examining the coherent-control literature shows that the vast
majority of controlled processes previously considered are
unimolecular in nature, e.g., the photodissociation or photoion-
ization of isolated molecules. Only recently have we shown3-6

that the essential principle of coherent control can be used
effectively to alter cross sections for scattering processes. That
is, we demonstrated that if one collides two molecules in a
superposition ofenergetically degeneratescattering states, then
the resultant scattering cross section contains controllable
interference terms.

For a general bimolecular collision of the type

whereV andj are vibrational and rotational quantum numbers,
the requirement that the total energy be the same means that
we must choose all the interfering paths contributing to the
process so that they are at energy

Here εV,j denotes the internal state of the BC molecule with

vibrational quantum numberV and rotational quantum number
j, and p2k2/2µ is the A-BC relative kinetic energy. Similar
definitions hold for the primed symbols. Thus, if we attempt
bimolecular control by colliding an initial superposition state
Φ made up of, for example, two vib-rotational states,

then we must simultaneously correlate each component of the
superposition state with a translational wavefunction whosek
wave-vector satisfies eq 1, that is

That is, we must construct wavefunctions of the form

which satisfy eq 3. WhenεV1,j1 * εV2,j2 this is not an easy task
to achieve experimentally, although we have provided some
suggested scenarios.3,6 If, however, the internal states used in
the initial superposition stateΦ are degenerate, the condition
(eq 3) on the relative momenta can be achieved automatically
with a single translational energy.

In ref 4 we followed the latter approach by considering an
initial superposition state comprised of degeneratemj magnetic
sublevels. The resultant scenario, while allowing control over
the angular differential cross section, did not allow for control
over the integral cross section. In this paper, we explore the
possibility of using another combination of degenerate asymp-
totic states, that is, different orbital angular momentum partial
waves l. In doing so, we deviate from the normal scattering
experiment in which two plane waves representing two molec-
ular beams are allowed to collide. Instead, by controlling thel
components of the incoming wave, we create asculpted
imploding waVe and explore its effect on specific quantum
transitions.

Although this approach is applicable to any bimolecular
collision, we apply it here to rotational excitation (and de-
excitation), obtaining optimally constructed imploding waves.* To whom correspondence should be addressed.

A + BC(V,j) f A′ + B′C′(V′j′)

E ) εV,j + p2k2/2µ ) εV′j′ + p2k′2/2µ (1)

Φ ) c1|V1,j1〉 + c2|V2,j2〉 (2)

p2kV1,j1

2 /2µ ) E - εV1,j1
, p2kV2,j2

2 /2µ ) E - εV2,j2
(3)

Φ ) c1|V1,j1〉|kV1,j1
〉 + c2|V2,j2〉|kV2,j2

〉 (4)
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We show that sculpting the incoming wave can lead to a
considerable enhancement of integral cross sections for specific
transitions.

The structure of this paper is as follows. In section 2, we
summarize the usual theory of rotational excitation by collisions
using plane wave beams of structureless atoms and rigid
molecular rotors. In section 3, we develop the theory of
scattering, and in particular rotational excitation, for the collision
between two nonspherical imploding waves. In section 4, we
show how to maximize the scattered flux associated with a
specific transition by sculpting such nonspherical imploding
waves. Finally, in section 5 we demonstrate the utility of our
approach via two sample rotational excitation cases, the collision
of an Ar atom with H2 and with HD.

2. Rotational Inelastic Transitions with Incoming
Plane-Waves

Here, we summarize the theory of rotational transitions for
ordinary inelastic collisions, as formulated by Arthurs and
Dalgarno.13,14Our purpose is not to repeat this well-know theory,
but rather to establish the notation used in this paper and to
emphasize the differences between a process occurring with
ordinary plane-waves and with sculptured imploding waves.

Consider, then, an atomic projectile colliding with a rigid-
rotor target whose coordinates are specified by two angles,θ
and φ, which comprise the unit vector rˆ ) (θ, φ). The
coordinates of the projectile relative to the rotor center of mass
are denoted R≡ (R, R̂), with R̂ ≡ (Θ, Φ) being a unit direction-
vector. With the target Hamiltonian written as

where I is the rotor’s moment of inertia andj is the rotor’s
(internal) angular momentum operator, the total Hamiltonian
is given as

Here,µ is the reduced mass of the atom-rotor system andV(R,R‚
r̂) is the atom-rotor interaction potential. It is convenient to
introduce the functionsΨjl

JM(R, r̂), which are the common
eigenfunctions ofH; the total angular momentum,J; and its
projection on a space-fixedZ-axis,M, having entrance-channel
internal and orbital angular momenta quantum numbersj and
l, respectively. These functions satisfy the Schro¨dinger equation:

The total energy,E, is comprised of translational and internal
rotational energies:

with kj being the channel wavenumber, given by eq 8 as

The Schro¨dinger equation can be solved13 by expanding
Ψjl

JM(R, r̂) in bispherical harmonics:

whereyjl
JM(R̂, r̂), the bispherical harmonics, are defined as

and are eigenfunctions ofJ, M, j, and l. Substituting eqs 5, 6,
and 10 into eq 7 we obtain a set of coupled channel equations
for the radial expansion coefficientsuj′l′rjl

J (R):

where

Equations 12 are solved numerically, subject to the boundary
conditions,

whereSj′l′rjl
J , an element of theS matrix, is given in terms of

Tj′l′rjl
J of eq 14 as

The asymptotic behavior of the wavefunction can be written
as

where the second term represents a scattered wave, and the first
term represents either a plane-wave (whose partial wave
components are given in the second line of eq 14) or an
imploding spherical waVe (with partial wave components given
in the last time of eq 14).

Given the S matrix, the probability of observing a rotational
transition from statejl to statej′l′ for fixed J is given as

3. Scattering of Sculpted Imploding Waves

We now generalize the treatment of section 2 to include a
collision with nonspherical imploding waves. Use of such
imploding waves offers a powerful method to control the
outcome of the collision and to alter the rotational transition
probabilities.

Hrot ) p2

2I
j(j + 1) (5)

H ) Hrot - p2

2µ
∇2

R + V(R, R‚r̂) (6)

HΨjl
JM(R, r̂) ) EΨjl

JM(R, r̂) (7)

E )
kj

2

2µ
+ p2

2I
j(j + 1) (8)

kj
2 ) 2µ

p2[E - p2

2I
j(j + 1)] (9)

Ψjl
JM(R, r̂) ) ∑

j′,l′

1

R
uj′l′rjl

J (R) yj′l′
JM(R̂, r̂) (10)

yjl
JM(R̂, r̂) ) ∑

ml)-l

l

∑
mj)-j

j

(jlmjml; JM)Ylml
(R̂)Yjmj

(r̂) (11)

p2

2µ[ -
d2

dR2
+

l′(l′ + 1)

R2
- kj′

2]uj′l′rjl
J (R) +

∑
j′′

∑
l′′

Vj′l′,j′′l′′
J (R)uj′′l′′rjl

J (R) ) 0 (12)

Vj′′l′′,j′l′
J (R) ≡ ∫∫yj′′l′′

JM (R̂, r̂)V(R, r̂)yj′l′
JM(R̂, r̂) dR̂dr̂ (13)

uj′l′rjl
J (0) ) 0,

lim
Rf∞

uj′l′rjl
J (R) ∼ -2iδjj ′δll ′ sin(kjR - lπ/2) +

(kj

kj′
)1/2

Tj′l′rjl
J e+i(kj′R-l′π/2) ) δjj ′δll ′e

-i(kjR-lπ/2) -

(kj

kj′
)1/2

Sj′l′rjl
J e+i(kj′R-l′π/2) (14)

Sj′l′rjl
J ) δjj ′δll ′ - Tj′l′rjl

J (15)

lim
Rf∞

Ψjl
JM(R, r̂) ) Ψin(R, r̂) + Ψsc(R, r̂) (16)

Pj′l′rjl
J ) |Sj′l′rjl

J |2 (17)
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Nonspherical imploding waves are formally obtained by
considering superpositions ofΨjl

JM(R, r̂) with arbitrary com-
plex coefficients{cjl

JM}

However, since our interest is control via changes inmj and
ml rather thanJ and M, it is more convenient to specify the
superposition state viamj- and ml-dependent coefficients,
denoted asdjl

mjml, which are related to thecjl
JM coefficients by a

unitary transformation of the form

Comparing eqs 19 and 18 with eq 10, we see that for an
incoming plane-wave,djl

mjml(plane) ) i lxπx2l+1δmjm
0δml0

wherem0 is the specification for the initialj projection.
By analogy to eq 16, we can break the asymptotic expansion

of ψj into incoming and scattered parts:

where

and

Substituting eqs 11 and 19 in eq 21 and using the orthogonal-
ity property of the Clebsch-Gordan coefficients15 allows us to
express the incoming wavefunction in terms of{djl

mjml} as

For cylindrically symmetric potentials, the kj vector can be
chosen in thez direction, and the summation overml reduces
to the single termml ) 0. As a result,ψj

in(R, r̂) depends on the
angleθ between kj and R but is independent of the azimuthal
angleφ.

Defining ageneralizedscattering amplitude as

we can writeψj
sc(R, r̂) as

We now proceed to derive expressions for the incoming and
scattered fluxes associated with a general incoming wave. We
concentrate on fluxes, rather than cross sections, for the
following reason. Plane-waves have a uniform incoming flux
coming froma singledirection and allow for the definition of

a cross section as the ratio between the scattered flux and the
incoming flux per unit area. However, an arbitrary incoming
wave has multidirectional and nonspherical incoming and
scattered fluxes. Hence the term “incoming flux per unit area”
is meaningless, and a cross section cannot be defined. We
therefore adopt the strategy of working separately with the
incoming (or imploding) and scattered fluxes and show below
(see section 4) how to choose the{djl

mjml} coefficients to
maximize the scattered flux into a given rotor statej′.

The imploding part of the wavefunction in theR f ∞ limit:

has an associated flux

where n̂is a radial unit vector. Using the fact that asR f ∞,
∂ψj

imp(R,r̂)/∂R ∼ -ikjψj
imp(R, r̂), we integrateFj

imp(R, r̂) over R̂
(at radiusR) and over rˆ to obtain the total flux ofψj

imp(R, r̂)
entering a sphere of radiusR:

We see that the imploding flux is proportional to the total
population of all{l, ml, mj}-states in the incoming wave. Any
unitary transformation ondjl

mjml conserves this quantity.
For a plane-wave,djl

mjml(plane) ) i lxπ2l + 21δmjm
0δml0.

Therefore,

This sum, and henceFj
imp for the plane-wave, are infinite. In

order to be able to compare the effectiveness of rotational
transitions using a general imploding wave to that of a plane-
wave, we consider only a finite portion of both waves by
introducing a cutoff angular momentumlf, chosen to be the
highest angular momentum which contributes effectively to the
scattering process.

Using a similar calculation as forψj
imp(R, r̂), the scattered

flux of ψj
sc(R, r̂) into j′, m′j is given by

Related,mj- and/ormj′-summed fluxes are given as

ψj(R, r̂) )
i

kj
∑
J)0

∞

∑
M)-J

J

∑
l)|J-j|

J+j

cjl
JM Ψjl

JM(R, r̂) (18)

cjl
JM ) ∑

mj)-j

j

∑
ml)-l

l

(jlmjml; JM) djl
mjml (19)

lim
Rf∞

ψj(R, r̂) ) ψj
in(R, r̂) + ψj

sc(R, r̂) (20)

ψj
in(R, r̂) ) 2∑

JMl

cjl
JMj

l
(kjR)yjl

JM(R, r̂) (21)

ψj
sc(R, r̂) )

i

kjR
∑
JMl

cjl
JM∑

j′l′
(kj

kj′
)1/2

Tj′l′rjl
J e+i(kj′r-l′π/2)yj′l′

JM(R̂, r̂)

(22)

ψj
in(R, r̂) ) 2∑

l
∑
mjml

djl
mjmljl(kjR) Ylml

(R̂)Yjmj
(r̂) (23)

fj′mjrjmj
(R̂) ) ∑

lml

dmjml
jl∑

l′ml′

i-l′Yl′ml′
(R̂)∑

JM

(jlmjml; JM) ×

(j′l′m
j′
m

l′
; JM)Tj′l′rjl

J (24)

ψj
sc(R,r̂) )

i

kjR
∑
j′mj′

∑
mj

fj′mj′rjmj
(R̂)(kj

kj′
)1/2

e+ikj′RYj′mj′
(r̂) (25)

ψimp
j(R, r̂) ∼ -2e-ikjR

ikjR
∑

l
∑
mjml

ildjl
mjmlYlml

(R̂)Yjmj
(r̂) (26)

Fj
imp(R, r̂) ) - ip

2µ[ψj
imp/(R, r̂)

∂ψj
imp(R, r̂)

∂R
-

ψj
imp(R, r̂)

∂ψj
imp/(R, r̂)

∂R ]n̂ (27)

Fj
imp ) p

µ
Im[R2∫∫dr̂ dR̂ ψj

imp/(R, r̂)
∂ψj

imp(R, r̂)

∂R ]
) -

pkj

µ
R2∫∫dr̂ dR̂|ψj

imp(R, r̂)|2 ) -
4p

µkj
∑

l
∑
mjml

|djl
mjml|2

(28)

∑
l
∑
mjml

|d jl
mjml(plane)|2 ) π∑

l

(2l + 1) (29)

Fj′mj′rj,mj

scat ) p
µkj

∫dR̂|fj′mj′rjmj
(R̂)|2 (30)

Fj′mj′rj
scat ) ∑

mj

Fj′mj′rj,mj

scat ; Fj′rj,mj

scat ) ∑
mj′

Fj′mj′rj,mj

scat ;

Fj′rj
scat ) ∑

mj,mj′

Fj′mj′rj,mj

scat (31)
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After some algebra, it is possible to show that

[if j ) j′, mj ) mj′, an additional (infinite) scattered flux exists
from the incomingwavefunctionψj

in(R, r̂)] and that

In a similar fashion we can show that

4. Maximization of the Scattered Flux

Consider now maximizing the scattered flux into a givenj′
state, subject to various constraints. The control parameters are
the djl

mjml coefficients, which shape the input wavefunction
ψj

in(R, r̂). Our strategy is to formulate the problem as a linear
optimization problem in these coefficients.

Note first that if we average onmj, then control is possible
only if the djl

mjml coefficients depend uponmj. That is, if djl
mjml

are independent ofmj, that is, if djl
mjml ) djl

ml, then no phase
control over the rotational transitions is possible. In order to
see this, consider the nonpolarized flux, given (in the absence
of mj dependence), by

Using the orthogonality of the Clebsch-Gordan coefficients,15

we obtain

That is, the flux no longer depends upon the phase of thedjl
mjml

coefficients. This loss of control by incoherent averaging over
mj is reminiscent of similar results obtained formj control over
collision processes.4

Consider next maximizing the scattered flux to a givenj′
manifold for an incoming wave comprised of only onemj state.
For this case we have, using eq 33,

where

It is easy to show that theBjj ′mj matrices are Hermitian.
Two strategies for control overFscat are in principle pos-

sible: the first is “classical”, in which we essentially choose

favorable values ofl andml, for which theBjj ′mj matrix elements
are largest. The other is quantum mechanical: we allow
interference between all the amplitudes comprising the incoming
wave. The latter is more general and is utilized here.

Within the framework of the quantum strategies, it is possible
to optimize thedjl

mjml coefficients, subject to the constraint that
either the total incoming flux is the same as that of a plane
wave or that the normalization of the incoming wavefunction
is the same as that of a plane wave:

Both constraints are considered below. In particular, details
of the constraints are discussed in section 4.1 and 4.2, and results
are presented in section 5.

4.1. Optimization Subject to Incoming Flux Constraint.
In order to equate the incoming flux, given in eq 28 with its
plane-wave value, we introduce a Lagrange multiplierλj′:

Differentiating with respect tod′jl ′′
/mjml′ to obtain the extremum

points ofFj′rj,mj

λ , we obtain the condition

Defining a dj,mj ≡ {djl
mjml} eigenvector, whose dimension is the

number of possible initiall-states, we can write eq 41 in matrix
form as

whereλĵ′ is a diagonal matrix of eigenvalues.
The flux associated with each eigenvector is proportional to

the value of the corresponding eigenvalueλj′, since by eqs 40
and 42

Thus, the scattered flux associated with thej′ r j, mj transition
is λj′ times thelf-truncated sum of the partial-waves weights
associated with an incoming plane-wave. In particular, the
maximal eigenvalue yields the maximal flux. Since the optimal
λj′ for one j′ r j transition will not necessarily enhance the
flux associated with any other transition, this control scenario
provides a great degree of selectivity of one rotational transition
over another.

4.1.1. The Cutoff Angular Momentum lf. For a plane wave,
Fj′rj,mj

scat ) (p/µkj)d†(plane)‚B‚d(plane). For high l’s, |Bl′′lml′

jj ′mj ′
ml
|

f 0 faster than 1/(djl
mjml d′′jl′

/mjml′), and thereforeFscat is finite,
even if d†d is infinite. By contrast, according to eq 43, the
optimal solution does not contain|Bl′′lml′

jj ′mj ′
ml
|, andFj′rj,mj

λ is only

Fj′mj′rj
scat )

p

µkj
∑
l′ml′

|∑
JMl

cjl
JM(j′l′mj′ml′; JM)Tj′l′rjl

J |2 (32)

Fj′rj,mj

scat )
p

µkj
∑
JMl′

|∑
lml

djl
mjml(jlmjml; JM)Tj′l′rjl

J |2 (33)

Fj′rj
scat )

p

µkj
∑

JMl′ll ′′
cjl

JM cjl ′′
/JM Tj′l′rjl

J Tj′l′rjl ′′
/J δ(j′l′J) )

p

µkj
∑
JMl′

|∑
l

cjl
JM Tj′l′rjl

J |2 (34)

Fj′rj
scat )

p

µkj

1

(2j + 1)
∑
lml

∑
l′′ml′′

djl
ml djl ′′

/ml′′ ∑
JMmjl′

(jlmjml; JM) ×

(jl ′′mjml′′; JM)Tj′l′rjl
J Tj′l′rjl ′′

/J (35)

Fj′rj
scat )

p

µkj

1

(2j + 1)
∑
Jl′

∑
lml′

(2J + 1

2l + 1)|djl
ml|2|TJ

j′l′rjl|2 (36)

Fj′rj,mj

scat )
p

µkj
∑
ll ′′

∑
mlml′′

djl
mjml djl ′′

/mlml′′ Bl′′lml′′ml

jj ′mj (37)

Bl′′lml′′ml

jj ′mj ≡ ∑
JMl′

(jlmjml; JM)(jl ′′mjml′′; JM)Tj′l′rjl
J Tj′l′rjl ′′

/J (38)

∫dRdr̂ψj1
/in(1)(R,r̂)ψj2

in(2)(R,r̂) ) δj1j2δ(kj1
(1) - kj2

(2)) (39)

Fj′rj,mj

λ )
p

µkj

[∑
lml

∑
l′′ml′′

djl
mjml djl ′′

/mjml′′ B′l′′lml′′ml

jjmj - λj′ ∑
lml

(|djl
mjml|2 - |djl

mjml(plane)|2)] (40)

∑
ml

∑
l

djl
mjml Bl′′lml′′ml

jj ′mj ) λj′djl ′′
mjml′′ l′′ ) 0, 1, ... (41)

Bjj ′mj‚dj,mj
) dj,mj‚λĵ′ (42)

Fj′rj,mj

λ ) p
µkj

[dj,mj

† ‚Bjj ′mj‚dj,mj
- λj′ (dj,mj

† ‚dj,mj
- d†(plane)‚

d(plane))]

)
p

µkj

[λj′d
†(plane)‚d(plane)] )

p

µkj

πλj′ ∑
l)0

lf

(2l + l) )

p

µkj

πλj′(lf + 1)2 (43)
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limited by the choice oflf. As we increaself in the construction
of the optimal imploding wave we can achieve larger and larger
scattered flux into the targetj′ manifold. Nonetheless, choosing
lf arbitrarily large may not be the best practical approach to
increasing the cross section, since the difficulty of preparing
the imploding wave in the laboratory is expected to increase
with increasinglf.

In order to decide what type of optimization problem we want
to solve, we choose the cutoff parameterlf according to the
following procedure: we calculate the diagonal contribution (p/
µkj)π(2l + 1)Bl′′l00

jj ′0 of the l-components of a plane-wave (formj

) 0) to the scattered flux (see eq 37) and truncate the sum when
this value dips below a preset fraction (1%) of its maximal value.

We emphasize again that for a nonuniform imploding wave,
each choice oflf corresponds to a different scattered flux and
hence to a different optimization problem. The above choice
of lf corresponds to optimizing the imploding wave for the first
lf partial wave and setting the weights of the remainingl > lf
partial waves to the values for a plane-wave. These partial waves
no longer contribute to the inelastic process of interest.

4.2. Optimization Subject to Incoming Wavefunction
Normalization Constraint. If we require the incoming wave-
function ψj

in(R, r̂) to satisfy aδj1j2δ(kj1

(1) - kj2

(2)) normalization
condition (eq 39), the coefficients which make up the imploding
wave must satisfy (see Appendix) the constraint

for every l, ml1, andml2.
In the cylindrically symmetric caseml ) 0, and if we consider

onemj value, then

That is, the magnitude for eachl component is the same as in
the plane-wave, and the only free parameters that can be
optimized are the phases{θjl

mj0}. The scattered flux ofψj
sc(R, r̂)

is now given by

The optimization is performed by a nonlinear search routine
in the {θjl

mj0} space of phases.

5. Computational Results

5.1. The Model.To demonstrate the possible control afforded
by sculpting the imploding wave, we consider a rotational
excitation problem, studied in refs 16 and 17, and compare the
imploding wave results to those obtained with plane waves.
Following refs 16 and 17, we expandV(R, R̂‚r̂), the projectile-
rotor interaction potential, in a series of Legendre polynomials18

and truncate the expansion, as appropriate for a weakly
anisotropic system, after the first three terms:

The termsV0(R) andV2(R) are parametrized by Lennard-Jones
potentials:19,20,22

where

For a heteronuclear diatom composed of two isotopes (such
as HD), we can computeV1(R) as23

whereδ is the displacement of the center of mass of the diatom
from the center of force. The potentialsV0(R), V1(R) (for Ar-
HD), andV2(R) are shown in Figure 1.

By defining a dimensionless variablex ≡ R/Rm and a
dimensionless potentialV* ) V/ε, whereRm ) R0

e andε ) ε0,
the Coupled Channels equations (eq 12) assume the form

where

The dynamics is seen to be determined by three dimensionless
parameters:B, BE/ε, µRm

2 /I, and by the form of the potential
chosen.

We consider the Ar-H2 system as an example of a homo-
nuclear molecule and the Ar-HD systems as an example of a
heteronuclear molecule. The effect ofδ on V0 and onV2 is of
the order ofδ2 and is therefore ignored, and we takeV0 andV2

∑
mj

dj1l
/mjml1 dj1l

mjml2 ) π(2l + 1)δml10δml20 (44)

djl
mj0 ) i lxπx2l + 1 eiθjl

mj0

(45)

Fj′rj,mj

scat )
p

µkj
∑
ll ′′

π(2l + 1)1/2

(2l′′ + 1)1/2i l-1′′ ei(θjl
mj0-θjl ′′

mj0) Bl′′lml′′ml

jj ′mj (46)

V(R, R̂‚r̂) ) V0(R) + V1(R)P1(R̂‚r̂) + V2(R)P2(R̂‚r̂) (47)

Figure 1. Isotropic potentialV0(R) and leading anisotropic potentials
for the Ar-HD and Ar-H2 systems.

V0(R) ) ε0[(R0
e/R)12 - 2(R0

e/R)6] (48)

V2(R) ) ε2[(R2
e/R)12 - 2(R2

e/R)6] )

a2ε0[q(R0
e/R)12 - 2(R0

e/R)6] (49)

q ≡ (R2
e/R0

e)6 and a2 ≡ (ε2/ε0)q

V1(R) ) -δ[dV0(R)

dR
+ 0.4

dV2(R)

dR
+ 1.2

R
V2(R)]

[-
d2

dx2
+

l′(l′ + 1)

x2
- Kj′

2]uj′l′rjl
J (x) +

B∑
j′′

∑
l′′

Vj′l′,j′′l′′
J (x)uj′′l′′rjl

J (x) ) 0 (50)

B )
2µεRm

2

p2
and Kj

2 ) kj
2 Rm

2 )

2µRm
2

p2 [E - p2

2I
j(j + 1)] (51)

Imploding Waves in Biomolecular Processes J. Phys. Chem. A, Vol. 103, No. 49, 199910337



to be the same for both Ar-H2 and Ar-HD. ForV1, the leading
term is proportional toδ, and the next term, neglected here, is
proportional toδ3.

The potential parameters chosen to model these systems are
ε0 ) 52.21 cm-1, R0

e ) 3.5573 Å,ε2 ) 6.78 cm-1, R2
e ) 3.814

Å, δ(Ar-HD) ) 0.1276 Å.21,22 Therefore,a1 ) 0.0359,a2 )
0.198, andq ) 1.52.µAr-H2 ) 1.9188 amu,µAr-HD ) 2.8099
amu. The H2 and HD rotational constants areBe ) 60.80 and
45.655 cm-1, respectively.24

We obtain theSj′l′rjl
J matrix elements by propagating the

Coupled Channels equations [eq 50] using Gordon’s method25

until we reach the asymptotic region, where the appropriate
boundary conditions [eq 14] are imposed. In this case, there
are seven open channels (j ) 0, ..., 6) for Ar-HD at Etot )
2000 cm-1 and three open channels (j ) 0, 2, 4) for Ar-H2 at
the same energy. Fixingjmax, the maximalj quantum number,
to 6, results in (at most) 16 channels for eachJ. The calculation
was repeated for eachJ value, whose maximal value is given
asJmax ) jmax + lf.

The properties of the∫∫yj′′l′′
JM (R̂, r̂)* Pl(R̂‚r̂) yj′l′

JM(R̂,r̂) dR̂ dr̂
matrix elements20 ensure that theV2(R)P2(R̂‚r̂) term can only
couplej quantum number values of the same parity. The same
holds for thel quantum numbers. Therefore,Bl′′lml′

jj ′mj ′
ml

vanishes
if either of j - j′ or l′′ - l are odd. This is also the case if there
is aV1(R) potential, butmj ) 0 (due to the fact that one of the
Clebsch-Gordon coefficients in eq 38 is zero). Hence, theBmli

jj ′

matrix factors into an odd-l block and an even-l block, which
are diagonalized separately. The overall maximal eigenvalue,
therefore, corresponds to a dj,mj vector with only odd or only
even components. The optimized wavefunction is therefore
parity-adapted,ψj(R, r̂) ) (-1)pψj(-R, r̂), wherep is the parity
of the l states in the expansion.

Below, we discuss the optimization results for four cases:
the j′ ) 4 r j ) 2 and thej′ ) 0 r j ) 2 transitions for Ar
colliding with HD and for Ar colliding with H2, at a collision
energy ofE ) 2000 cm-1. We focus on the case of initialmj )
0.

5.2. Optimization Constrained by the Incoming Flux.
Tables 1 and 2 show, in column 3, the flux into all finalj′,
having optimized the results forj′ ) 4 r j ) 2, mj ) 0 or j′ )
0 r j ) 2, mj ) 0 for both Ar + H2 and Ar + HD.

For example, the maximum flux for rotational excitation into
j′ ) 4 for Ar + HD is 0.055, as compared to the partial wave
result (column 2) of 0.016. Note also that the optimization into
j′ ) 4, for example, does not necessarily decrease (or increase)
the flux into j′ * 4. That is, each optimization is selective to
the particular product channel optimized.

Thel-components of the eigenvector dj,mj leading to a maximal
flux for the j′ ) 4 r j ) 2 and thej′ ) 0 r j ) 2 transitions
are shown in Figure 2. Clearly, as can be seen, lower angular
momenta contribute to the Ar-H2 scattering than to Ar-HD.

TABLE 1: Scattered Flux Associated with All the j′ r j )
2, mj ) 0 Transitions when the j′ ) 4 State Is Optimizeda

(a) Ar-HD System

j′ plane-wave
maximum

(flux norm) ×103/π(lf + 1)2
maximum
(wfn norm)

minimum
(wfn norm)

4 16.3 55.5 7.4 22.0 13.9

Other Transitions
0 6.2 0.6 0.1 5.8 15.0
1 37.9 19.8 2.6 49.8 18.0
2 137.2 43.9 5.8 112.9 148.5
3 38.2 31.4 4.2 45.0 40.4
5 2.0 12.8 1.7 2.3 2.0
6 0.1 0.1 0.0 0.1 0.1

(b) Ar-H2 System

j′ plane-wave
maximum

(flux norm) ×103/π(lf + 1)2
maximum
(wfn norm)

minimum
(wfn norm)

4 1.6 7.4 1.7 2.0 1.0

Other Transitions
0 10.5 50.8 11.8 24.4 7.7
2 420.9 112.2 26.1 406.7 424.4

a All values have been multiplied by a factor of 1000.

TABLE 2: Scattered Flux Associated with All the j′ r j )
2, mj ) 0 Transitions when the j′ ) 0 State Is Optimizeda

(a) Ar-HD System

j′ plane-wave
maximum

(flux norm) ×103/π(lf + 1)2
maximum
(wfn norm)

minimum
(wfn norm)

0 6.2 66.3 6.7 37.7 0.9

Other Transitions
1 37.9 38.4 3.9 33.2 47.3
2 137.2 34.4 3.5 117.4 124.2
3 38.2 54.7 5.5 32.0 44.5
4 16.3 20.2 2.1 15.0 18.9
5 2.0 0.4 0.0 2.1 2.0
6 0.1 0.0 0.0 0.5 0.1

(b) Ar-H2 System

j′ plane-wave
maximum

(flux norm) ×103/π(lf + 1)2
maximum
(wfn norm)

minimum
(wfn norm)

0 10.5 92.4 13.3 34.8 0.6

Other Transitions
2 420.9 171.5 24.7 396.3 431.3
4 1.6 11.0 1.6 2.0 1.3

a All values have been multiplied by a factor of 1000.

Figure 2. l-Components of the dj,mj eigenvector (left, absolute square;
right, phase) leading to a maximal flux for the Ar-HD and Ar-H2

systems: (a)j′ ) 4 r j ) 2, mj ) 0, 1, 2; (b)j′ ) 0 r j ) 2, mj )
0, 1, 2; using the flux-normalization condition. Formj ) 0, only even
or only odd l-values have nonzerodl components; hence, only those
are shown.
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Similarly, lower angular momenta contribute more to the
optimized excitation process (j′ ) 4 r j ) 2) than to the
optimized de-excitation (j′ ) 0 r j ) 2) process.

The cutoff values for the angular momentum arelf ) 48 and
36 for Ar-HD and Ar-H2, respectively, for thej′ ) 4 r j )
2, mj ) 0 case (Table 1) and 55 and 46 for thej′ ) 0 r j ) 2,
mj ) 0 case (Table 2). In order to be able to compare those
results, we also give the maximal flux divided by the normaliza-
tion factor ofπ(lf + 1)2.

The absolute square value of the incoming wavefunction
corresponding to the maximal flux are shown in Figure 3. These
should be compared to an incoming plane-wave, whose absolute
value is unity. Values for the maximal flux for these cases are
provided in the figure captions, from which it is clear that the
Ar + HD wavefunctions are less dispersed than those for Ar+
H2. Note that the incoming wavefunctions for the four cases
shown in Figure 3 are remarkably different from one another
in topology. For example,|ψmax

in |2 for Ar + HD j′ ) 0 r j ) 2
de-excitation is dominant at large values ofz, whereas the Ar
+ HD |ψmax

in |2 for excitation j′ ) 4 r j′ ) 2 is heavily
concentrated at smallz. A similar difference is not seen for the
Ar + H2 case.

The differential cross section is shown, for initialmj ) 0
values (summed over all finalmj′ values), in Figure 4. Interest-
ingly, the optimized cross sections are symmetric aboutθ )

90°, whereas the plane-wave result tends to peak nearθ ) 180°.
This is because (formj ) 0) only l values of the same parity
contribute to the final result, a consequence of the fact that the
B matrix does not couplel values of different parity.

5.3. Optimization Constrained by the Normalization of
the Incoming Wave. In the second approach, we require that
the incoming wavefunction be normalized as

As in eq 45, the coefficientsdjl
mjml are given by

The extrema are obtained atθ values which satisfy the condition

Equation 54 leads to a system of nonlinear equations, which
may have many solutions, corresponding to local minima/
maxima. To find the absolute minimum/maximum with high

Figure 3. Square of the absolute value of the incoming wavefunction
leading to maximum outgoing flux for the Ar-HD and Ar-H2 systems
using flux-normalization condition. The circle depicts the size of the
diatomic: (a)j′ ) 4 r j ) 2, mj ) 0 optimization, maximum values
of |ψmax

in |2 are 520 for Ar-HD and 163 for Ar-H2; (b) j′ ) 0 r j )
2, mj ) 0 optimization, maximum values of|ψmax

in |2 are 235 for Ar-
HD and 125 for Ar-H2. Solid line contours correspond to 0.5, 0.1,
and 0.01 of the maximum value; dashed contours are for 10-3, 10-4,
and 10-5 of the maximum.

Figure 4. Differential outgoing flux for the case of maximal flux (left)
and for a plane-wave (right), for the Ar-HD system (top) and the Ar-
H2 system (bottom). Results are for optimization using the flux-
normalization condition: (a)j′ ) 4 r j ) 2, mj ) 0 optimization; (b)
j′ ) 0 r j ) 2, mj ) 0 optimization. The plotted flux is a sum over all
final mj′ values.

∫dRdr̂ψj1

in,(1)/(R, r̂)ψj2

in,(2)(R, r̂) ) δj1j2
δ(kj1

(1) - kj2

(2)) (52)

djl
mjml ) i l xπ x2l + 1eiθjl

mj0

δmjm0δml0 (53)

∂Fscat(θj0
mj0, θj1

mj0, ...,θjl
mj0, ...)

∂θjl
mj0

) 0 l ) 0, 1, 2, ... (54)
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probability, we use a simulated annealing algorithm26 with
variablesθjl

mj0 for l ) 0 to lf, where lf is estimated in section
4.1.

The maximal and minimal fluxes for thej′ ) 4 r j ) 2, mj

) 0 transition are shown in Tables 1 and 2 (columns 4 and 5),
along with the fluxes into other final channels. For the case of
Ar + HD, for example, the range of results intoj′ ) 4 obtained
with incoming plane-wave normalization is 0.0139 to 0.0220,
compared to the flux associated with an incoming plane-wave
of 0.0163. The less-constrained maximization associated with
the flux norm yielded the considerably larger value of 0.0553.
Note, however, that even though thej′) 4 rj ) 2, mj ) 0 flux
has been maximized, it often still remains small compared to
the elastic scattering (j ) j′ ) 2).

The phaseθjl
mj0 leading to a minimal and to a maximal flux

for the j′ ) 4 r j ) 2, mj ) 0, 1, 2 and for thej′ ) 0 r j )
2, mj ) 0, 1, 2 transitions are shown in Figure 5. They show
remarkably little uniformity, reflecting the individuality of each
optimization. This case-dependence is also evident in the
absolute squares of the incoming eigenfunctions leading to
maximum and to minimum scattered fluxes, shown, for Ar+
HD, in Figure 6. The corresponding differential fluxes formj

) 0 (summed over all possiblemj′) are shown in Figure 7. Note
the significantly different angular distributions associated with
the optimized vs plane-wave results (Figure 4). Analogous
results were obtained for Ar+ H2, but space limitations prevent
their consideration here.27

Additional studies were carried out to assess the stability of
the extrema. For example, the phase of eachθ contributing to
djl

mjml was vaired byπ to determine the effect of such changes
on the yield. Results showed that the yield was strongly affected
by variations in some angles and totally insensitive to changes
in others. An alternate study involved random changes in the

values of the phases from their values at the extremum, over a
range of-0.3 to 0.3 radians. The flux was found to be sensitive
to some of these variations, but a wide variety of phases in this
range produced similar flux values.

Figure 5. l-components of the dj,mj eigenvector leading to a minimal
(left) and a maximal (right) flux for Ar-HD and Ar-H2: (a) j′ ) 4 r
j ) 2, mj ) 0, 1, 2 optimizations; (b)j′ ) 4 r j ) 2, mj ) 0, 1, 2
optimizations. Wavefunction-normalization conditions were used.

Figure 6. Square of the absolute value of the incoming wavefunctions
leading to maximum and minimum outgoing flux for the Ar-HD
system using the wavefunction-normalization condition. (a)j′ ) 4 r

j ) 2, mj ) 0 optimization, maximum values are 169 for|ψmax
in |2 and

138 for |ψmin
in |2; (b) j′ ) 0 r j ) 2, mj ) 0 optimization, maximum

values are 193 for|ψmax
in |2 and 30 for|ψmin

in |2. Contour values are as in
Figure 3.

Figure 7. Differential outgoing flux for wavefunctions leading to a
minimal flux (left) and a maximal flux (right) for Ar-HD using the
wavefunction-normalization condition: (a)j′ ) 4 r j ) 2, mj ) 0
optimization; (b)j′ ) 0 r j ) 2, mj ) 0 optimization.

10340 J. Phys. Chem. A, Vol. 103, No. 49, 1999 Frishman et al.



6. Summary

We have shown that it is possible to significantly alter the
nature of the incoming scattering wave in a bimolecular process
so as to optimize the scattering into a given product channel.
From the viewpoint of coherent control, this is yet another
example of how one can superimpose eigenstates in the
continuum to produce controllable quantum interferences that
affectg the flux into particular channels.

It remains a challenge to produce these modified incoming
waves in the laboratory. One possible approach would be to
focus the projectile beam or the target beam (or both) with an
optical standing wave specifically designed for the purpose.
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Appendix: Orthonormality of General Incoming Waves

In this appendix, we prove the orthogonality properties of
(cylindrically asymmetric) incoming waves with arbitrary
djl

mjml. We also derive the conditions satisfied bydjl
mjml when a

general incoming wave is constrained to have the normalization
of a reference plane-wave.

Orthogonality between plane-waves implies, amongst other
things, that two waves propagating along different directions,
k̂(1) andk̂(2), are orthogonal to one another. If we insist that the
sculpted incoming wavefunctions have this orthogonality prop-
erty, we must characterize each incoming wavefunction with a
k̂ vector. However, in contrast to plane-waves, ak̂ vector cannot
signify the propagation direction of the wavefunction, since a
general incoming wavefunctiuon does not have a well-defined
propagation direction. Thek̂ vector should therefore be thought
of as a quantum number which helps differentiate one general
incoming function from another.

We begin by writing a partial wave expansion, valid over
the whole space (and not just in the asymptotic region, as in eq
23), for two incoming wavefunctions, as

Since in the above expansion, Rˆ 1 ≡ (θ1, φ1) and R̂2 ≡ (θ2, φ2)
are expressed relative to the directions ofkj1

(1) andkj2

(2), respec-
tively, we first need to express both wavefunctions with respect
to the samez axis, which can be chosen as the direction ofkj1

(1).
Rotating thekj2

(2) vector to coincide with thez axis via three
Euler angles (R â, γ), we can writeψj

(2)(R2, r̂) in the common
coordinate system as

whereDmlml′′
(l2) (R, â, γ) are Wigner rotation matrices.15 Integra-

tion yields

Using orthonormality relations of the spherical harmonic
functions, we obtain

After imposing the Bessel functions orthonormality conditions,
we obtain

Therefore, the angular normalization requirement is

Using the identities

we obtain

Using the orthogonality and normalization of the rotation
matrices (see ref 15, eq 4.6.1)

we obtain, my multiplying eq A.6 byDm′l2m′l1
(l′) (R, â, γ) and

integrating,

ψj1

(1)(R1, r̂) ) 2∑
l
∑
mjml

djl
mjml jl(kj1

(1)R1)Ylml
(R̂1)Yjmj

(r̂) (A.1)

ψj2

(2)(R2, r̂) ) 2∑
l
∑
mjml

djl
mjml jl(kj2

(2)R2)Ylml
(R̂2)Yjmj

(r̂) (A.2)

ψj
(2)(R2, r̂) )

2∑
l
∑
mjml

djl
mjmljl(kjR)∑

m′′l

Dmlm′′l
(l2) (R, â, γ)Ylm′′l

(R̂1)(-1)m′′l-mlYjmj
(r̂)

∫dR1dr̂ψj1

/(1)(R1, r̂)ψj2

(2)(R2, r̂) )

4∑
l1l2

∑
ml1ml2

∑
mj1mj2

dj1l1

/mj1ml1 dj2l2

mj2ml2∫R2dRjl1(kj1

(1)R)j l2(kj2

(2)R) ×

∫dR̂Yl1ml1
/ (R̂)∑

m′′l2

Dml2m′′l2
(l2) (R, â, γ)Yl2m′′l2

(R̂) ×

(-1)m′′l2-ml2∫dr̂ Yj1mj1

/ (r̂)Yj2mj2
(r̂) (A.3)

∫dR1dr̂ψj1

/(1)(R1, r̂)ψj2

(2)(R2, r̂) ) 4∑
l

∑
ml1ml2

∑
mj

dj1l
/mjml1 dj1l

mjml2 ×

∫R2dR jl(kj1

(1)R) j l(kj
2

(2)R) × Dml1
ml2

(l) (R, â, γ)(-1)ml1-ml2δj1j2

∫dR1dr̂ψj1

/(1)(R1, r̂)ψj2

(2)(R2, r̂) ) 4∑
l

∑
ml1ml2

∑
mj

dj1l
/mjml1 dj1l

mjml2 ×

∫R2dR jl(kj1

(1)R) j l(kj2

(2)R) × Dml2ml1

(l) (R, â, γ)(-1)ml1-ml2δj1j2

δ(k̂j1

(1) - k̂j2

(2)) )

1

4π2
∑

l
∑

ml1ml2

∑
mj

dj1l
/mjml1 dj1l

mjml2 Dml2
ml1

(l) (R, â, γ)(-1)ml1-ml2

δ(k̂j1

(1) - k̂j2

(2)) ) ∑
l
∑
m2

Ylm2

/ (k̂j1

(1))Ylm2
(k̂j2

(2)) (A.4)

Ylm(k̂j2

(2)) ) ∑
m′′

Dmm′′
(l) (R, â, γ)Ylm′′(k̂j1

(1))(-1)m′′-m (A.5)

δ(k̂j1

(1) - k̂j2

(2)) )

∑
l
∑
ml2

Ylml2

/ (k̂j1

(1))∑
ml1

Dml2ml1

(l) (R, â, γ)Ylml1
(k̂j1

(1))(-1)ml1-ml2

0 ) ∑
l
∑
ml1

∑
ml2

[∑mj

1

4π2
dj1l

mjml1 dj1l
mjml2 - Ylml1

(k̂j1

(1))Ylml2
(k̂j2

(2))] ×

Dml2ml1

(l) (R, â, γ)(-1)ml1-ml2 (A.6)

1

8π2∫0

2π∫0

π∫0

2π
Dm′1m1

(l1) (R, â, γ)Dm′2m2

(l2) (R, â, γ)dR sin âdâdγ )

δm′1m1
δm′2m2

δl1l2

1
2l1 + 1

(A.7)
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Finally, choosingk̂j1

(1) ) (0, 0), we obtain the normalization
condition on thedjl

mjml coefficients as

for every l, ml1, andml2.
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